Minimax and Adaptive Estimation of Covariance Operator for Random Variables Observed on a Lattice Graph

نویسندگان

  • T. Tony Cai
  • Ming Yuan
چکیده

Covariance structure plays an important role in high dimensional statistical inference. In a range of applications including imaging analysis and fMRI studies, random variables are observed on a lattice graph. In such a setting it is important to account for the lattice structure when estimating the covariance operator. In this paper we consider both minimax and adaptive estimation of the covariance operator over collections of polynomially decaying and exponentially decaying parameter spaces. We first establish the minimax rates of convergence for estimating the covariance operator under the operator norm. The results show that the dimension of the lattice graph significantly affects the optimal rates convergence, often much more so than the dimension of the random variables. We then consider adaptive estimation of the covariance operator. A fully data driven block thresholding procedure is proposed and is shown to be adaptively rate optimal simultaneously over a wide range of polynomially decaying and exponentially decaying parameter spaces. The adaptive block thresholding procedure is easy to implement and numerical experiments are carried out to illustrate the merit of the procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples

Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

ADAPTIVE ESTIMATION OF STATIONARY GAUSSIAN FIELDS BY NICOLAS VERZELEN1 INRA and SUPAGRO

We study the nonparametric covariance estimation of a stationary Gaussian field X observed on a regular lattice. In the time series setting, some procedures like AIC are proved to achieve optimal model selection among autoregressive models. However, there exists no such equivalent results of adaptivity in a spatial setting. By considering collections of Gaussian Markov random fields (GMRF) as a...

متن کامل

Sparse CCA: Adaptive Estimation and Computational Barriers

Canonical correlation analysis (CCA) is a classical and important multivariate technique for exploring the relationship between two sets of variables. It has applications in many fields including genomics and imaging, to extract meaningful features as well as to use the features for subsequent analysis. This paper considers adaptive and computationally tractable estimation of leading sparse can...

متن کامل

Minimax Estimation of Bandable Precision Matrices

The inverse covariance matrix provides considerable insight for understanding statistical models in the multivariate setting. In particular, when the distribution over variables is assumed to be multivariate normal, the sparsity pattern in the inverse covariance matrix, commonly referred to as the precision matrix, corresponds to the adjacency matrix representation of the Gauss-Markov graph, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012